જો ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} $ જ્યાં  $x\, \in \,R\,,\,x\, \ne \, - 1$  તો $a_{17}$ ની કિમત મેળવો. 

  • [JEE MAIN 2016]
  • A

    $\frac{{2017\,!\,}}{{17\,!\,2000\,!}}$

  • B

    $\frac{{2016\,!\,}}{{17\,!\,1999\,!}}$

  • C

    $\frac{{2016\,!\,}}{{16\,!}}$

  • D

    $\frac{{2017\,!\,}}{{2000\,!}}$

Similar Questions

${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..

${(1 + x - 3{x^2})^{2134}}$ ના સહગુણકનો સરવાળો મેળવો.

જો ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ હોય તો $k$ નો અવિભાજય અવયવ મેળવો 

$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
  4 \hfill \\
  n \hfill \\ 
\end{gathered}  \right)} {\left( { - 1} \right)^n}$   ની કિમત મેળવો 

$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ = . . .